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SECTION 1
INTRODUCTION

Design, evaluation, and testing of trans-ionospheric radio frequency (RF)
communication systems require high fidelity channel models and detailed knowledge of
fading channel statistics. Such models can be used to construct realizations of the
received signal for use in digital simulations or hardware channel simulators. During
the design process, knowledge of channel fading statistics is used to develop power
requirements, size interleavers, and assess performance, for example.

The design goal for a truly robust trans-ionospheric communications system is to
achieve performance that is acceptable over the entire range of possible fading
conditions from fast, frequency selective, Rayleigh fading to slow, flat fading including
the regime between Rayleigh fading and a non-fading channel. While considerable
effort has been expended in the nuclear effects cimmunity over the past three decades
to characterize the Rayleigh fading channel and to develop Rayleigh fading mitigation
techniques, somewhat less effort has been directed at robust design and performance in
non-Rayleigh fading. One reason for this is that if a system is properly designed to
successfully operate over the full range of Rayleigh fading, then it is generally assumed
that it will also perform well in non-Rayleigh fading.

There are situations, however, where this assumption may not be valid. For
example, the performance of many systems is degraded in slow Rayleigh fading where
long, deep fades can cause tracking loops to loose lock on the received signal. A
ratural question to ask is the following: What happens to receiver performance in
slightly non-Rayleigh fading where the channel coherence time may be longer than
under Rayleigh fading? Does performance degrade further because the fades may be
longer or does it improve because the fades are generally not as deep?

Effects of non-Rayleigh fMding are also important in determining the
performance of syst. ns that have not been designed to operate under highly disturbed
ionospheric conditions. An obvious question is: Will these systems perform adequately
under weakly disturbed (either man-made or naturally occuning) ionospheric
conditions? This question should be addressed before effort is spent to needlessly
upgrade communications systems that may already perform adequately in weak
scintillation or before fragile communications systems unexpectedly fail.

The purpose of this report and a companion report [Dana, 1992b] is to extend
existing Defense Nuclear Agency (DNA) channel models to include the non-Rayleigh
fading regime. Ideally these models will then cover all possible fading conditions, from
fast, frequency selective fading caused by a highly disturbed ionosphere to naturally
occurring slow, non-Rayleigh fading. Such models are needed for the design, analysis,
and testing of existing and new communications systems.

The problem with a general-purpose channel model is that the statistics of non-
Rayleigh fading are not described by any single mathematical expression, as is the case



for Rayleigh fading. Thus it is the intent of the companion report, Temporal Statistics
of Non-Rayleigh Fading, to demonstratc that Rician statistics provide a reasonable
worst case channel model in this regime. In this report, temporal statistics (i.e., mean
fade duration and separation) of Rician fading are derived. These statistics are then
used to demonstrate that realizations of sampled Rician fading can be generated with
the desired statistics. In Dana [ 1992b] the temporal statistics of non-Rayleigh fading are
analyzed, and it is shown that Riciar statistics may provide a reasonable worst case for
the cumulative distribution, mean fade duration, and mean fade separation.

L1 RICIAN STATISTICS.

Realizations of the channel impulse response function generated with Rician
amplitude statistics [Rice, 1948] have been used for many years to evaluate system
performance in the regime between full RaYleigh fading and ambient non-fading
conditions. This appioach is often used because it is easy to generate a realization uf
Rician fading from a realizationl of Rayleigh fading by simply adding a constant
component to the complex impulse response function, appropriately re-normalized to
maintain constant power.

However researchers in the area of ionospheric physics (see, for example,
Fremouw, Livingston, and Miller [1980]; Rino and Fremouw [1973]; Rino, Livingston,
and Whitney [1976]; and Whitney, et al. [19721) have suggested that Nakagami-m,
generalized Gaussian, or log-normal distributions may more accurately describe the
observed amplitude distribution of RF scintillation caused by the ambient ionosphere.

None of these distributions or the Rician distribution adequately describe the
observed phase fluctuations of non-Rayleigh fading. Indeed, the Nakagami-m and log-
normal distributions only describe amplitude fluctuations. Often two-component
models, one for amplitude and another for phase, are used to described the statistics of
observed trans-ionospheric signals (see, for example, Wittwer [1980]). However, such
two-component models may not accurately reproduce observed amplitude-phase
correlation of non-Rayleigh fading [Fremouw, Livingston, and Miller, 1980].

Two important points should be noted about proper design of robust trans-
ionospheric communications systems. First, performance should be insensitive to the
random phase fli,,tuations encountered on a the link. Second, it is important that the
performance is insensitive to the differences between the various fading distributions.
All are possible, so the system should be designed to perform against the reasonable
worst case. If phase fluctuations are important, then separate Total Electron Content
(TEC) dynamics models are available to stress the system [Witwver, 1980; Frasier,
19881.

Recently De Raad and Grover [1990] undertook a theoretical study of the
amplitude statistics of non-Rayleigh fading for a wide range of ionospheric conditions.
They conclude that (1) none of these models is reliable in general; (2) the actual
amplitude distribution has a strong dependence on the power spectrum of the scattering
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ionospheric structure as well as the Fresnel length; and (3) Rician amplitude statistics
provide a useful "worst case" description of the occurrence of deep fades.

Multiple phase screen (MPS) techniques (e.g., Knepp [19831; De Raad and
Grover [1990]) can be used to generate realizations of the channel impulse response
function that represent direct solutions to Maxwell's equations. These higher fidelity
realizations exhibit a large range of amplitude and phase fluctuations under non-
Rayleigh fading conditions. However De Raad and Grover [19901 correctly observe
that the uncertainty in the validity of MPS mealizatiors has been shifted from the
amplituc. mind phase distributions to the statistical desc.Iujdon of the scattering medium.

Still, the temptation persists to use Rician fading realizations for non-Rayleigh
fading. They are easy to generate from Rayleigh fading realizations, and they contain
phase fluctuations (albeit fluctuations that differ significantly L -.-n observations). By
comparison with MPS realizations of non-Rayleigh fading, De Raad and Grover [1 996j
show that Rician amplitude statistics repres- t a reasonable worst case for the observed
cumulative distribution of fades, and Dana [1992b] shows that Rician temporal statistics
also represent a reasonable worst case for the observed mean fade duration and
separation.

The purpose of this report is to provide further information on the t-,mporal
statistics (mean fade duration and separation) of Rician fading and to define sampling
requirements of Rician realizations of the channel impulse response function. These
•,.lytic -,su,,s arc compare' to m•asure va us fioion a representative set of M-PS
realizations in Dana [1992b] where utility of Rician temporal statistics in bounding the
observed range of fade durations and separations in MIPS realizations is demonstrated.

1.2 SAMPLING STATISTICS.

The original version of this report [Dana 1988] was intended to address three
questions that arise during simulation or tudware testing activities of communications
links under Rayleigh fading conditions: (1) How many deccr-eration times (,ro) per
realization of the channel impulse response functioi a-re necessary? (2) How many
samples per decorrelation time are necessary? (3) How should interpolation be done
between samples? This report re-addresses these questions for the more general case of
Rician fading, and more completely addres-,es an additional question: (4) What is the
expected variation in measured parameterc . a realization?

The fourth question can arise in at least two situations. The efficacy of a
realization of the channel impulse response function may be in question, or it may be
necessary to validate a realization for use in hardw, :- testing. An approach used by the
author to validate realizations is to measure key pai;rmeters, such as mean power,
amplitude moments, decorrelation time, and nun"' -' of samples per decorrelation
time. These measured parameters should agree -", ersemble values to within some
tolerance. The question is: What tolerance? Dana !1991] partially addresses this
question. This report incorporates some recent findings on the expected tolerance of
measured realization paraieters.
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The first three questions are answered in part in the DNA signal spccification
for nuclear scintillation [Wittwer, 1980] which requires a minimum of 100
decorrelation times per realization and 10 samples per decorrelation time. However
considerable statistical variation in receiver performance is seen when the minimum
realization length is used. This is particularly true of links that have large power
margins and are susceptible to only the deepest fades. Of course the best answer to
these questions is to measure link performance with realizations of increasing length
and resolution until the statistical variation in the results from one realization to the
next is acceptable. Unfortunately the luxury of doing this analysis ordinarily does not
e7ist.

The next higher level of analysis of these questions is to look at the statistics of
the realizations. This is the approach that will be taken in this report. The first order
statistics of realizations are measured by calculating amplitude moments and the
cumulative distribution and comparing these to ensemble values for Rayleigh fading.
The second order statistics of the realizations are measured by calculating the mean
duration and separation of fade,.

In general, the received signal may be written as the convolution of the channel

impulse response function h(t,r) with the transmitted modulation m(t):

u(t) = j h(t,r) m(t--.) dr (1.1)
fl, 0

In either software link simulations or in hardware channel simulato,", Equation 1.1
can be implemented as a tapped delay line:

N- I

u(t) = hb(t~jA;)rn(t-jA'r) A' (1.2)
j=0

where Nr is number of taps on the delay line; dTr is the delay spacing of the delay line;
and h(tjAT) is the time varying complex weight of thejth tap. In a software simulation
of link performance time will also be discretely sampled (i.e., t = kdl).

Under Rayleigh fading conditions h(t,T) is a complex, zero mean, normally
distributed random variable and thus has a Rayleigh amplitude distribution. It then
follows from Equation 1.2 that u(t) is also a complex, zero mean, normally distributed
random variable with a Rayleigh amplitude distribution.

A complete analysis of the first three questions would consider the sampling
requirements for each delay of the discrete impulse response function /i(kAt,jAr),
However this is beyond the scope of this report. Therefore sampling requirements on
the flat fading impulse response function li(kAr), where
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will be addressed in this report. The sampling requirements for h(kAt) will give some
indication of the sampling requirements for the fre, ncy selective impulse response
function h(kAtjA-r). Perhaps this shouid be state-. another way: Sampiing that is
inadequate for h(kAt) will surely . inadequate for h(kAtrjAr). Thus it is the intent of
this repert to define adequate sampling for h(kAt) and to infer adequate sampling
requirements for each delay of h(kAtjAr).
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SECTION 2
TEMPORAL STATISTICS OF RICIAN FADING

This section is a generalization of well-known results from the classical work of
Rice [1948, 1954, 19581 on the first and second order statistics of Rayleigh fading. To
the author's knowl' dge, the extension of Rice's results on temporal statistics to non-
Rayleigh fading is now.

2.1 FIRST ORDER STATISTICS.

Under strong scattering conditions, the electric field incident on the plane of the
receiver is the summation of many ,-tves propagating in slightly different directions
about the line-of-sight. Under the central limit theorem of statistics, the two orthogonal
components of the electric fielo must toin be zero-mean, normally distributed random
variables. It is assumed that the two or*.hogonal components axe also independent, The
complex narrow-band envelope of the electric field undergoing Rayleigh fading -may
be then represented as

E(t) = x(t) + i y(t)

where x and y are independent and normally distributed with zero mean and standard
deviation a. The carrier frequency term, exp (icot), has been neglected in this
expression. Thus E(t) may be thought of as the output voltage of a down-converter
where x(t) is the in-phase component and y(t) is the quadrature-phase component,

Under mild to weak scattering conditions, a model of the electric field is a
specular component plus a normally distributed random component. The electric field
is then written ar

E(t) = (x(t) + r cos 31 + i [y(t) + r sin 0]

where r is the constant component and 0 is a constant phase. Cle.rly Rayleigh fadinge
corresponds to the case where r is zero.

Rice [1948] was the first to show that the probability density function of the
amplitude of E(t),

a(t) = -,

has the probability density function:

f(a) = •exp I- 2- Io[. (2.1)

where I0(-) is the modified Bessel function.

For the mean power of of the electric field,

Po =(aI) = 2o7 +?,-

6



to be constant, the power of the fluctuating component, 2&ý, must be reduced as the
power of the specular component, r2, is increased. To keep track of this in a consistent
manner both are written in terms of the scintillation index S4, where

S•[(a4_-(a2)2 2S4 (a) 2

The powers of the two components are then:

2c' = Po(l-R)

r2 = PoR

where the "Rician" index R is
i R = _ýI1-S4

The Rician index is the fraction of the total power that is in the constant component.

Upon writing a and r in terms of R, Equation 2.1 becomes

a) 2a Fa.!/PoI ][2qR.21Po
Jfta)- P0(1_R )exPL-1-.R J°L -R

The corresponding phase 9 .fte electric field is

tan- [ x(t)+rcos 01

The probability density function of the phase is

1~ 2_R
27 exp I[-R ]+[ (l-R)) cos(O- )x

exp {R[I-csO6 l-R + erf[(R ~2 Cos (O0]}6

:()=•I-R I -R)

where erf (.) is the error function. The probabil'ty density function of phase is just
l/2,-r when the scintillation index is unity (R=O), as it should be for Rayleigh fading.

These two probability density functions are plotted iu Figures 1 and 2 for

severai values of the scintillation index. Amplitude in Figure 1 is a and phase in

Figure 2 is the quantity 9- 0. The solid line curves in both figures are the Rayleigh
limits. As expected, both functions approach delta functions as the scintillation index
approaches zero.
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Figure 1. Rician amplitude probability density function.
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Figure 2. Rician phase probability density function.
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The cumulative distribution of the power P (P = a 2), which is equal to the
probability that the instantaneous power is less than or equal to P, is given by

ý_P R1  00 __ E_ rn , / 1 22FP) = Jf(a)da = exP-[_-- J r 2(+1)n
F 0P -[1.RJ-A- I 2,+) _I- I (2.2)11-

where y(n,x) is the incomplete gamma function and F(n+l) = n! is the gamma
function. The summation is obtained by expanding the Bessel function in a power
series and then performing the integration term-by-term. This form Gf Marcum's Q
function [Marcum, 1948] is easily evaluated for values of R that are not too close to
unity. In particular Equation 2.2 converges slowly for values of S 4 less than 0.25,
corresponding to R values greater than 0.96.

For the Rayleigh case the cumulative distribution is exponential:

F(P) = l-exp [_-P . (S4 =1)

The Rician cumulative distribution function is plotted in Figure 3 versus the
ratio P/Po for several values of the scintillation index. For values of the scintillation
index between 0.75 and unity the Rician cumulative distribution is close to the Rayleigh
curve. As the scintillation index is reduced from about 0.75 to 0.5, the probability of
deep fades is significannty reduced. it is n•oteworthy that case where the power of the
specular and fluctuating components are equal corresponds to an S4 value of -0/4 (S4 =

0.866). Thus a Rician cumulative distribution does not deviate significantly from a
Rayleigh distribution until more than half of the power is in the constant component.
Of course the performance a receiver may be quite sensitive to the existence ol a
specular component.

2.2 DBPSK EXAMPLE.

An easily calculated example of the effects of Rician fading is the differentially
coherent binary phase-shift keying (DLBPSK) symbol error rate. The well known
DBPSK symbol error rate for an additive white Gaussian noise (AWGN) chanael is

PSE = 1 e--'Y (AWGN Channel) (2.3)

where yis the symbol energy-to-noise density ratio and P is unity for this cnannel. In a
Rician fading channel this erro," rate must be averaged over the probability density
function of the fading power P - a2:

(PSE) = L exp [-'ya2] f(a) da

9
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Figure 3. Cumulative distribution of Rician fading.

This equation is easily e'valuated using Equation 2.1 with the result:

(PsE)- 2[1(l-R)"] exP 1 + (l-R)yJ (Rician Channel)

When R is unity. corresponding to the non-fading case, this expression reduces to

Equation 2.3. When R is zero, corresponding to full Rayleigh fading, i; il uces to the

well-known form.

1
(PsE.) = 2( 1 + "y (Rayleigha Channel).

Plots of the Rician channel DBPSK error rates for several values of the
scintillation index are in Figure 4. As one might expect from examining the cumulative
distribution, the DBFSK symbol error rate for a Rician fading channel is close to the
full Rayleigh fading channel error rate when the scintillation index is larger that about
0.75, and is close to the AWGN error rate when the scintillation index is less that about
0.25. Thus for DBPSK the most interesting values of scintillation index, excluding I
and 0, are between 0.75 and 0.25.
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2.3 SECOND ORDER STATISTICS.

The fading rate is determined by the second order statistics of the fluctuating
1ii, of the electric field. The autocova,"ience of the electric field is, in general,

([E(t)-Eo]IE*(t+ r)-E0o]) = (.x(t)x(t+ r)) + (y(t)y(t+ T)) = 20T2 p(r)Il

where

Eo = r cos +ir sin .

There are two limiting forms for the correlation function p(,,). Under strongly
disturbed scattering conditions that occur at early times or at the center of the
disturbed region, p(r) has the Gaussian form

p(,r) = exp [_-

L* ?

11N

• _ • , 1•• - , I , , f*1 , " I I Il I 1 I I' I "i I I 1 1 I 1 I I I '

0 5 10.5.0.5.3.3.4



where ro, the decorrelation time of the electric field, is defined as the e folding point
of the auiocorrelatior. function [p(,to) = e-1]. The corresponding Doppler spectrum of
the temporal fluctuations is

S(WoD) = exp (-i&oD) p('r) dr = •-•to exp 4.

which also has the Gaussian form. Under less disturbed conditions, the correlation
function is usually assumed to have the form

p(T) = l+ a 11d exp [- -•o"T

where the parameter a4 (a4 = 2.146193) is determirted by the condition that p(,ro)=e-'.
The con'eponding Doppler spectrum has the form commonly referred to as an f-4

spectrum:

S(CoD)- =a 4  [l+( (oWD/a 4)21]2

A third Doppler spectrum is used for real-time frequency selective channel
models [Dana 1992a]. This f- spectrum has the functional form

16r. 1

3= [1 + (tOO)J9/a6).] 3

where the normalization of S(O)D) is chosen so that p(0) is unity. The corresponding
correlation function is

"p()= 1+ T' 3r +J exp- ]to

where a 6 - 2.904630 results from setting p(ro)=e- .

A comparison of Rayleigh fading realizations (S4 = 1) of the impulse response
function with f-,f-6, and Gaussian Doppler spectra is shown in Figure 5 where
realization power in decibels (dB) is plotted versus time/To. These realization.s were
generated from the same set of random numbers, as described in Appendix A, so there
is correlation in the features seen in the three frames. The f'-4 realization in the bottom
frame has the most spiky appearance because it has more energy at high Doppler
frequencies. The three realizations have similar low frequency behavior, and fades in
the realizations follow each other quite closely. The difference between the realizations
is the high frequency jitter of the f- and f- realizations about the more smoothly
varying Gaussian one. The significance of this on the temporal statistics of the fades
will become apparent later.
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A comparison of Rician fading realizations of the impulse response function with
f- Doppler spectra and scintillation indices of 1.0, 0.75, 0.5 and 0.25 is shown in
Figure 6. Again thesc realizations were generated from the same set of random
numbers, so there is correlation in the features seen in ali four plots. As expected, the
Rayleigh fading realization in the top frame (reproduced from the bottom frame of
Figure 3) has the deepest fades and the largest flares. As the scintillation index is
reduced, the deep fades fill in and the power in flares above 0 dB is reduced. It is
interesting that as the scinti.,ation index decreases, fades at a given level appear to get
longer. This phenomenon is shown theoretically for Rician fading in the developments
below.

2.4 TEMPORAL STATISTICS.

The mean duration and separation of fades below an atbitrary power level P and
that of flares above P, are calculated from the mean number (N(P,T)) of crossings of
the level P in the time interval T.

The probability that the amplitude a crosses the level 1 = "fP in the time interval t
to r+dt with a positive derivative is equal to the probability that a' > 0 and that 1 - a'dt
< a < 1. This probability is given by the expression

fda' J daf(a,a') = dt f da'a'flt,a')
0 0

where fla,a') is the joint probability density function of the amplitude a and its time
derivative a' = daldt. The probability that a will cross the level I in the time interval t
to t+dt with a derivative of either sign is then

"0o

dt J la'I f(l,a') da'

For stationary processes, the mean number of level crossings of P in the interval t to
t+T then becomes

00

(N(P,T)) = T J 1a'0 f('f-,a') da'
-00

The joint probability density function of the Rician distributed amplitude a and
its time derivative a' is derived in Appendix B. This function is:

14
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F2a ap 21 F- 1f~aoa' -P(-R) exI- 1-R 10 I 1 l-R

xl.exp I)
Z, 2irPo(1-R) J e 2ASPo(l-R)j

(0O< a < oo, --oo < a < oo)

It can be seen from the form of this equation that the probability density function of a
is Rician; the probability density function of a' is Gaussian with zero mean and
variance of ,42Po(1-R)/io; and a and a' are independent. Also the functional form of
fta,a') is independent of the functional form of the Doppler spectrum. Only the
parameter A varies with the Doppler spectrum (A = 1 fcr the Gaussian spectrum, A
1.1858 for thef'6 spectrum, and A = 1.518 for thef-4 spectrum).

The mean number of level crossings can now be easily evaluated with the result

(N(P,T)) =A go-) 18 I&L_2~ exp- I--QR ]0
-- [- 1-1 -R J

The effect of different Dorrler spectra is to scale the mean number of level crossings
by the quantity 4. This fact was shown qualitatively by comparing the realizations with
unurelragll spcut.a iii "Figulre 5.

Figure 7 shows plots of the mean number of crossings of P in one decorrelation
time versus the ratio PIPo for a Gaussian Doppler spectrum and several values of the
scintillation index. For the Rayleigh case the maximum value of (N(P,7T)) occurs at
P/Po = 1/2 or -3 dB. As the scintillation index decreases the maximum value of
(N(P,T)) approaches 0 dB.

By noting that two level crossings are required to define the beginning and end
of a fade, the number of fades per unit time below the level P is q = (N(P,vr0))/2r0 .
The mean separation (Ts,,(P)) of fades below P is then obtained from the mean
number of fades per unit time. For any long time interval T the mean number of fades
is irT, and the mean separation is just T/r/T or lM7. Thus the mean separation of fades
below P is

(T'P(P)) -2 TO
(N(P, ro))

The mean separation of fades below P is equal to the average time between crossings of
P with either a negative value of a' (which defines the start of the fade) or with positive
value of a' (which defines the end of the fade). Thus the mean separation of fades
below P is also equal to the mean separation of flares above P.

16
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The mean duration (TD,,r(P)) of fades below P is obtained as follows: During a
long time interval T the total time that the power will be below P is F(P)T where F(P)
is the cumulative distribution given in Equation 2.2. The mean duration is then the sum
of all durations F(P)T divided by the number of fades i7T. The result is

2TOF(P)
(TD.,,(P)) = .(p)

The mean duration (TFI.,(P)) of a flare above P is the mean time that the powe"
stays above P. Using the arguments given above, the mean separation of a fade or a
Eare is equal to the mean time that the signal is above P plus the mean time that it is
below P, (TD,,(P)) -+ (TFIa,,(P)) = (Tsep(P)). The mean duration of a flare is then

2rO[ I-F(P)I
(Trare(P)) = (N(P, ro))
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The mean duration and separation of fades are shown in Figures 8 and 9,
respectively, for a Gaussian Doppler spectrum and several values of the scintillation
index. For other Doppler spectra, the curves in Figures 8 and 9 scale by I/A.

The curves irn Figure 8 show, for some power levels, that the duratio, of fades
increases as the scintillation index is reduced. The mean duration of fades for S4 equal
to 0.75 exceeds that of Rayleigh fading at all power levels: the mean fade duration for
S4 equal to 0.5 exceeds that of Rayleigh lading except for P/Po values between -4 and
-2 dB; and the mean fade duration for $4 equal to 0.25 exceeds that of Rayleigh fading
except for P/Po values between -13 and -1 dB. Note, however, that when $4 is equal to
0.25 the probability of a 13 dB fade is 3.7x!0-10 , and the mean separation of 13 dB
fades is 7.4x10 8 ro. Thus for S4 values greater than about 0.25, it is possible to have
fades that are longe, than occur at the samc level with full Rayleigh amplitude
statistics.

L Gaussian PSD /
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10"I2
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Figure 8. Mean duration of Rician distributed fades.
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SECTION 3
SAMPLED RICIAN FADING

The requirements on the sampling of fading realizations are given in the DNA
signal specification for nuclear scintillation [Wittwer, 1980] which requires a minimum
of 100 decorrelation times per realization and 10 samples per decornelation time. The
questions that arise from this requirement can be summarized as: How close are such
realizations to Rician fading? To address this question, random realizations of Rician
fading are generated; moments of the amplitude., cumulative distribution, and mean
fade duration and separation are measured; and these measured values are compared
with their ensemble values.

Dana [1988] showed that 100ro realizations of Rayleigh fading are adequate for
fade depths of 20 dB or less, and that 400z3 realizations are necessary to simulate fades
down to 30 dB. It was also shown in Dana [1988] that 10 samples per decorrelation
time are sufficient when linear interpolation of the complex impulse response function
is used to sample h(kAtsam) 40 times per decorrelation time.

Thus results in this section are, for the most part, limited to 400r0 realizations
sampled at Atsam=z-/40. Only the f4 Doppler frequency PSD is considered for non-
Rayleigh fading because this is the PSD recommended by DNA for slow, flat fading
cases where the scintillation index is most likely to be less than unity.

Because of the finite number oi samples in each realization, each measurement
of realization statistics is a random variable with some mean and standard deviation.
Variations in statistics from realization-to-realization are measured by generating a
large number of realizations (1024 to be exact). Each parameter is measured b,
averaging over the entire realizatioi.. Average and standard deviation values of the
1024 measurements are computed. Thus the standard deviations below represent the
"realization-to-realization variation in the measurements of amplitude moments,
cumulative distribution, and temporal statistics.

The measurement variation of the mean power of realizations can be calculated
analytically, as discussed in Appendix C. it may be possible to compute measurement
variances for other amplitude moments in the general case of Rician fading. Such a
tedious exercise, however, is left to the determined reader. Power measurement
variances below agree quite well with the analytic results given in Appendix C.

Three cases will be considered. The number of samples per realization N is
1024, 2048, or 4096, and the number of samples per decorreiation time No is 10. Here
No is the number of samples per decorrelation time used to generate the realizations.
Methods of generating such realizations are outlined in Appendix A. To measure the
statistics of the realizations, linear interpolation of the real and imaginary parts of the
impulse response function is used to obtain a sampling period Ats•,,of ;)/40.

The objectives of this section are to present the means and standard deviations of
amplitude moment, cumulative distribution, and temporal statistics, and to attempt to
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answer the above question based on these results. This section is limited to flat fading
realizations with varying values of the scintillation index and Doppler frequency power
spectral density.

3.1 MEASURED FIRST ORDER STATISTICS.

One criterion for deciding that a realization has the proper Rician amplitude
statistics is that measured moments of the amplitude should agree with Rician values
within some tolerance. Ensemble values for the moments of the amplitude are obtained
from Equation 2.1:

(a) -[• 1 exP- 2 (1-R) {Io -R) + R I, [(IR)]}

(a2 = Po

(as) = I1 (3R" F , { 13-.R2 _,)]o+2R (2-R)._ I I2R)l4 [i-R L- 2(1--R) L(

(ad) = P/2 (2_R2)

where Io(-) and I&(') are modified Bessel function.

Tnese moments are plotted in Figure 10 versus the scintillation index for unity
mean power. However, amplitude moments are easily obtained for other values of tile

n12mean power by noting that (an) scales as P o0.
The scintillation index S4 is the standard deviation of the power. It is necessary

but not sufficient that S4 equal unity for Rayleigh fading. The scintillation index is a
good measure of the statistics of flares but not of fades.

Statistics that are sensitive to the distribution of fades are moments of the log

amplitude. Using Equation 2.1 and a little algebra, these moments are found to be:

[ =] [ R
X) = (Ina) I •ln [P0(0-R) ] + i exp _,]n

2 1 -
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_ (In2a) = In [Po('-R) ] (X) - 4-n2 [Po(1-R)]

1 [ F R ]n 2(n+I)+ (2,n+I)
"+r • e L-"J-__[TR-j r(n+ 1)

The • and • functions ax:

4f(n+1) XVT ) +

002
;(2,n+1) 2 1= ý(2,n)-I 2 (2,1)

k=n+i k n

where -t is Euler's constant (y = 0.5772157...).
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The first two moments of log amplitude are plotted in Figure 11 versus the
scintillation index for unity mean power.

Measured values of the mean and standard deviation of the amplitude moments,
S4, (X), and (X2) for Rician fading realizations are in Table 1 for eight cases including
100ro, 200:ro, and 400'ro long realizations, three different Doppler frequency power
spectral densities (PSDs), and four values of the scintillation index. Measured values
for a single realization should equal the ensemble value plus or minus one or two
standard deviations. It can be seen from the table that the average values are close to
the ensemble values but the standard deviations of the higher amplitude moments can
be as large as 20 percent of the measured values.

It is noteworthy that the measurement variation of (X) increases dramatically as
the scintillation index is reduced while that of (X2) is relatively insensitive to S4. An
explanation for this curious behavior has not been discovered.
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Figure 11. Log amplitude moments of the Rician distribution.
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Table 1.
Statisti-,s of sampled Rician fading realizations.

Ensemble Values

N 11024 2048 4096 4096 4096 4096 4096 4096
No 10 10 10 10 10 10 10 10

PSD Gauss Gauss Gauss fI I f' -4' f-' I -
O 1.0 1.0 1 1.0LO 1.0 1.0 0.75 0.5 j).25

____Measured Values* (Normalized to Ensemble Va!ues)
(a) 0.999 0.998 0.999 0.997 0.996 0.998 0.999 1.000

0.054 0.040 0.029 0.028 0.027 0.027 0.018 0.009
(a2) 9 0.998 0.996 0.998 0.994 0.99. 0.996 0.998 0.999

a 0.105 0.077 0.056 0.054 0053 0.049 0.034 0.017
(a) 9 0.995 0.993 0.997 0.991 0.9b6 0.994 0.997 0.999

a 0.161 0.0117 0.085 0.081 0.080 0.071 0.049 1 0.026
(a4) g 0.991 0.988 0.995 0.989 0.984 0.991 0.995 0.998

a 0.226 0.164 0.119 0.113 0.111 0.094 0.065 0.034
04 . W.982 0.9,89" "0.996 0.998 0.997 U.195 0.994 0.993

a 0.084 0.061 0.046 0.044 0.042 0.043 0.040 0.038
(X) 1. 1.000 1.005 1.004 1.013 1.017 1.004 1.003 1.009

aY 0.213 . 0.155 0.114 0.109 0.106 0.180 0.273 0.548
(2) R. 0.996 1.000 1.001 1.007 1.009 0.993 0.991 0.990

- 0.153 0.111 0.081 0.075 0.072 0.121 0.124 0.085
N1 p 1.018 1.011 1.004 0.998 0.999 0.999 0.999 0.999

a 0.083 0.056 0.038 0.048 0.05.5 0.055 0.055 0.054
* pg = Measurd average value

c = Measured standard deviation

Perhaps a better criterion for the validity first order statistics is close agreement
between the Rician and the measured cumulative distributions. Measured cumulative
distributions (dots plus or minus one-sigma error bars) are plotted in Figures 12-16
for cases 5-8 in Table 1, respectively, along with the ensemble curves (Eqn. 2.2). A
level of 0 dB corresponds to the mean power Po. It can be seen from the figures that
400ro realizations do indeed have, on the average, a Rician distribution of fades.
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3.2 MEASURED SECOND ORDER STATISTICS.

Table I also contains the mean and standard deviation of the measured number
of samples per decorrelation time. The measured value of No is obtained by
performing an autocorrelation of the complex impulse response function and finding
the e-1 point. Close agreement of this parameter with its ensemble value ensures that
the realization will indeed have the desired decorrelation time in a simulation or
hardware test.

The fidelity of the realizations in reproducing the second order statistics of
Rician fading will be demonstrated by considering the mean fade duration and
separation. The mean fade duration is a good statistic to examine for communications
applications because errors often occur in bursts during deep fades. If the fades, on the
average, are too long or too short, error bursts will not have the proper durations and
the resulting receiver performance may be misleading.

Fade duration and separation measurements (dots plus or minus one-sigma error
bars) and ensemble curves (solid lines) for thef- Doppler PSD are shown in Figures
16-19 for cases 5-8 respectively. Figure 16 shows the these measurements for full
Rayleigh fading. Good agreement between the measure and ensemble values is seen,
except for 30 dB fades. At this level the ensemble fade duration is 0.026 ro, which is
quite close to the sample duration of 0.025ro. As the scintillation index is reduced,
measured mean fade durations are generally close to. if not right on- the ensemh1bp
curves. However, large variations are seen in the measured mean fade separations.

Two effects contribute to the low mean fade separation measurements seen for
scintillation indices less than unity. Because separation measurements require two
fades, some realizations do not contribute to the realization-to-realization fade
separation statistics, thereby reducing the measured average. Also, it is not possible in
these realizations ýo measure fade separations larger than about 400'ro. Thus measured
mean separations are biased to lower values because large random samples are absent.

In Figure 19, for a scintillation index of 0.25, a large discrepancy in the
measured mean fade duration and separation is seen at fade level of +3 dB. Here the
mean fade duration is about 800ro, which clearly cannot be accurately measured in
400 ro realizations. Because the measured mean fade separation and measurer- nt
variance at this level are not zero, at least two realizations must have had two +3 dB
flares even though the probability of such an event is less than 5x10-4. The measured
mean duration of 5 dB fades (which occur with a probability of approximately 3xl0 -4 )
is close to the ensemble value of 0.31r,, but the measured mean fade separation is only
ten percent of the ensemble value of 1042Tro.

Except for low probability events with large durations or separations, these
results demonstrate that 400ro Rician fading realizations sampled at to/40 do indeed
have the proper temporal statistics.
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APPENDIX A
REALIZATIONS OF RICIAN FADING

The methods of generating flat fading realizations of the impulse response
function for Rician fading channels are simple extensions of Rayleigh fading methods
discussed in detail elsewhere [e.g., Knepp, 1982; Knepp and Wittver, 1984; Dana,
1991; Dana 1992a]. Only a brief review is presented this appendix.

The methods fall into two classes: Fourier transform and real-time digital filter
techniques. The f- andf- Doppler Power Spectral Density (PSD) realizations are
particularly ,i-nple to g lerate using digital filters. Realizations with a Gaussian
Doppler PSD are more easily generated using Fourier transforms. These methods will
be reviewed in subsections of this appendix.

A.1 FOURIER TRANSFORM TECHNIQUE FOR GAUSSIAN PSDs.

The starting point of the Fourier transform method of generating a reali7ation
of flat Rician fading is the Doppler frequency PSD function, S(oaD). The Gaussian
form of this function is:

S(0D) = "Ti'•oPo(1-R) exp (Gaussian PSD)

where P0 is the mean power of the realization, and l-R is the fraction of power in the -

random component. The "Rician" index R is

R -- 4_1-4s2

where S4 is the scintillation index. The quantity S(coD)dcopl2lL is the mean power in the
Doppler radian frequency interval WoD/ 2 rz to ((oD + daoD)/2it.

Discrete realizations of the chauiel impulse response function will contain N
time samples and No samples per decorrelation time. Thus the time spacing of the
discrete samples is

A= roS--No

and the total time duration of the realization is NA:. In the Doppler radian frequency
domain the spacing of the discrete samples is

2it
AW(D = 7

Note that the quantity AdooLAt, which will appear later in a Fourier transform, is just
2ri/N.

A-]



The samples in the frequency domain are generated by first calculating the
fraction o signal power in each Doppler frequency bin, Sj = S(UAcD)Acoj)121t. For the
Gaussian PSD,

, -•po(IR)N_. _____2•2S' 1 N exp[-2 1 , (= -N12, ,N12- )

Next the random Doppler frequency spectrum HUjAo)D) of the impulse response
function is generated:

HjAOD) = IZL j + (VT]ieieo)3jO

where R is the fraction of the total power in the constant component and p is the
constant phase of the Rician component. The quantity 6j,k is the Kronecker delta
symbol:

I j=k{ k 0 otherwise

The leading factor 21rUAwD has been included in H(jdo)D) so that the discrete Fourier
transform of H(IAoD) will be dimensionless. Random components of the spectrum, 'j.
are complex, normally disturbed random variables with the g.roperties:

(ýj ) = 6j, k

(ýj~k) = 0o

Thus the mean power of the 4 samples is unity. Random samples of ýj may be easily
generated using

j= ln(ui) exp (2r"iu 2j)

where utj and u2j are independent random variables uniformly distributed on the
interval [0,1).

Finally the random Doppler spectrum of the channel impulse response function
is Fourier transformed to the time domain. In continuous notation this Fourier
transform is

00

h(t) = H(OD) exp (ioDt) d•)D

-Co

and in discrete notation,
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AW)D

h(kAt) = H(iAot) exp [i(jA(OD)(kAt)] Aft

= 12 [-2[rj i j + ( &VP--i-e )6•'jo ] exp [2ci(jk/N)]f

where k =0,1,-.. ,N-1.

A.2 DIGITAL FILTER TECHNIQUE FOR f-4 AND f-6 PSDs.

An f-4 or f- realization can be generated by passing white Gaussian noise
through cascaded single-pole filters, as described in Dana [1992a].

Anf4 filter can be created by cascading two single-pole filters:

Yk - ayk-i + bxk-1 (A. 1)

Xk -axk-i + bvk-.

The coefficients a and b are]:

a = exp (-a 4At/ro) = exp (-a 41No)

b = l-a-

where a4 = 2.146193. Discrete samples of the additive white Gaussian noise random
piocess vk are generated using the equation:

Ql-.a')PO(l_-R) -2--

Vk = [ l4 +a 2 J- k •

The vk samples must have mean power given by the quantity in the square brackets so
that the mean power of the filter output samples, Yk, will have mean power of Po(l-R).
The discrete channel impulse response function in this case is

h(kAt) = Yk + 4-q .

To minimize the transient response at start-up it is necessary to initialize the
filter. This is done by setting

Some authors prefer to include the gain of the filter in b coefficients. For example, see Bogusch [ i989]
Equation 2-40. Wittwer [1980] writes thef"4 filter equations as shown here but he combines the
exponential in the a coefficient with the expression for the mean power of the input white Gaussian noise
to obtain a hyperbolic tangent function.
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Yo = '/Po(1-R) uo

[(l._a2)po,(lR) 2
2

where uo and u1 are independent samples of the random process • uncorrelated with
the vk samples. The Y, and x, samples are obtained from Equation A.1 and the first vk
sample, ve. Even with this initialization there is a transient response because Yo and xo
do not have a "history" as they do after steady state, is achieved. It is therefore
suggested that the filter be "warmed up" for at least one decorrelation time before
using the output.

An f-6 filter can be created by cascading three f-2 filters. The filter equations
are therefore given by:

Zk = azk- + bYk-_

Yk = aYk-. + bxk-j (A.2)

xk =axk- + bvk-.-

The coefficients a and b are:

a = exp(-a 6At/½) = exp(-a,6/No)

b =-1 Zl-21

where a 6 = 2.904630. Discrete samples of the additive white Gaussian noise random
process Vk are generated using the equation:

(1 -a 2)2P(1 -R) 2
Vk = I I +4a 2 +a 4  - 'k•

Again the vk samples must have mean power given by the quantity in the square
brackets so that the mean power of the filter output samples, Zk, will have mean power
of Po(1-R). The discrete channel impulse response function is

h(kAt) = Zk + 'Poei'•

Again, to minimize the transient response at start-up the initial filter values aie:

zo = [o(I -R) Uo
-4)po(

YO I +4a2 +aa 4jU!I
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X P [(l-a2)2po(lR)]"Xo = 1 +4a 2+a 4 ] U2

where uo, u1 , and u2 are independent samples of complex AWGN uncorrelated with the
vk samples. The filter should be "warmed up" for at least one decorrelation time
before the output is used.

A.3 WHAT ABOUT f-' PSDs?

An obvious question is: Why not discuss generation of realizations with an f-2
Doppler PSD? Indeed the expressions for Xk in Equations A. I and A.2 are single-pole
filters that produce realizations with f- 2 Doppler PSDs:

xk aXk-! + bvk-.

For this simple case, the coefficients a and b are:

a : exp (-At/r) = exp (-i/Nt)b1
The problem with this Markov process is that the temporal statistics are, strictly

speaking, undefined. This is because the scale facl._r A in the expression for the mean
number of level crossings in Section 2.4 is

A2 = (mo D)2S(woD) . (A.3)

For the f- 2 Doppler PSD,

S(COD) + 2 2+

and the expression for A yields infinity.

Fortunately, for a discrete realization there is a maximum Doppler frequency
determined by the sample spacing. The highest Doppler frequency component in the
sampled realizations has a period 2At, corresponding to a maximum frequency of:

(ODmax - ,No

The value of A for a sampled realization is then:

A = No - tan- (icN 0 )
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For integer values of No this expression reduces to No.

Thus the mean number of level crossing is finite and the mean duration and
separation of fades are non-zero. Unfortunately these quantities depend or, No. As the
number of samples per decorrelation time is increased, the mean number of level
crossing increases and the mean fade duration decreases.

The dependence of the temporal statistics 3f the f-2 Doppler PSD rcalization on
No is likely to be unaccep,,able in most applications. Thus only Doppler PSDs with a
frequency roll-off greater thar. f 3 (so Eqn. A.3 is finite) should be used to generate
realizations of Rician fading. This will ensure that the realization temporal statistics are
well-behaved.
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APPENDIX B
JOINT PROBABILITY DENSITY FUNCTION f(a,a')

The purpose of this appendix is to derive the joint probability density function of
the Rician amplitude a and its time derivative a' = daldt. This function is required to
calculate the temporal statistics of Rician fading. A lesw general form of this derivation
was first published by Rice [1948].

The starting point for this calculation is the determination of the joint
probability density function of the random in-phase and quadrature components x and
y of the complex envelope of the electric field. It is assumed that x and y are
independent, have zero mean, and that they are normally distributed. Thus the joint
probability density function of x and y is

f(x,Y)_21-F . x2+V 2](.1
,wexp L-7 20r2 •(B)

Now the joint probability density function of the time derivatives x' = dxldt and y' -

dy/dt must be calculated. It will be shown that x and x' are independent, as are y and
y'. It will be assumed that x, x', y, and y' are jointly independent. Thus the joint
probability density function of x' and y' is all that is needed in addition to Equation B. I
to write down the joint probability density function ftx,x',yy'). Once this function has
b een ohtained a simple chnge ^f variables fr% x,.'K y, and.y' to a and a' Will yield'

the desired function.

In order to determine the distribution of x' (or y'), consider the random function
x(t) written as a Fourier stnchastic integral

00

x(t) = z(O)D) exp (iOot) (B.2)

-~00

The quantity z(ctD) is a random function in the Doppler frequency domain. It is useful
to assume that z(coD) is a zero-mean, normally distributed random process, although
this is not necessary because the central limit theorem will make x(t) normally
distributed for almost any reasonable distribution of z(roD). However, with the normal
assumption for z(oWD), x(t) is the sum of many independent, normally distributed
random variables, and is necessarily a zero-mean, normally distributed random
variable.

Before continuing, it is interesting to show the relationship between the random
spectral components z(o)D) and the Doppler spectrum S(woD). The correlation function
of the stationary process x(t) may be written as
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(X(tI)x(t 2 ))
P(t2-t) = a2 (B.3)

-00 -00
-n 2 n t 0 27c o, e p C (i(OO Dtl--iO)D2t2) .

However the correlation function p(r) may also be written in terms of S(COD):

cc

p(r) = S(O)D) exp (iWo•) d-).

-00

The spectrum S(O)D) must be an even function if the correlation function p(r) is to be
real.

To ensure the integral in Equation B.3 is only a function of time difference
te--'-12, the integrand must contain a factor 27t&((OD-O)D). Using the Dirac deltafunction to collapse the double integral in Equation B.3 and comparing the result with

Equation B.4 gives

(z(DOM)z*(DO2)) = 21ta& 8(o)D-6oD2) S(a)oD) (B.5)

This equation also demonstrates that the random Doppler spectral componznts of z(.oD)
are uncorrelated, which is a consequence of the assumption that the random process
x(t) is stationary.

The time derivative of x(t) is given by differentiating Equation B.2, with a
similar expression holding for v':

00

x'(t)= (io)D) Z(WD) exp (iODt) do .

-00

Because z(wD) is normally distributed with zero mean, x'(t) will also be normally
distributed with zero mean. The variance of x'(t) is

(X'(t)x'(t)) f= O) f; !j-'2 CODltO2 (z(a)Dj)Z*(tO)2)) exp [i(oftl--O)D2)t]

0 O -00

00

F2S dO)D dp
= = cS(°)-• = 0 2  (B.6)

-CO
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The variance of x'(t) may be written in the general fonin:

20242
(x'(tOx'(t)) = :

where

ft lGaussian Doppler PSD

A = /,6- = 1.1858 f -Doppler PSD

',4/IF2 = 1.5176 f-4 Doppler PSD

and where the parameters cz4 and ocr were determined in Section 2.2.

The cross correlation of x'(t) and x(t) is

cc 00

(x'(t)x(t)) = 2I (Di) (z(o)i)z*(-o2)) exp [i(ooj-o)D2)tI

of 2xo f 2x-00 -- 00

= -i(I DS(O)D) d-O = =0 . (B.7)

Equation B.5 and the fact that S(aoD) is an even function have been used in reducing
Equations B.6 and B.7. Because x(t) and x'(t) are uncoffelated and normally
distributed, they are also independent. Identical results hold for the variance of y' and
the cross correlation of y and y'.

The joint probability density function of x, x', y, and y' may now be written
down:

[~ i __. L . '
flx,x',y,y') = exp [- 202 4•rA 2  p -4A2

This function may be transform to the desired function of a and a' by making the

change of variables

x + rcosi0= acos6

y + r sin O= a sin 0

where r is the constant component of Rician fading and 0 is the constant phase. The
time derivatives of x and y are

B-3



x" = a' cos 0-ao' sin 0

y' = a'sin 0+a0'cos 0

which gives the polar coordinate equations

x2 + y2 = a2 + r 2 - 2ar cos (0- 0)

X,2+ y,2 = a,2 + a 2e'2

The prob.azility density function coordinate transformation is

Sx,x',yy') dxdx'dydy" = fAa,a',OO') Idet(J)I dada'dOdo'

where the determinate of the Jacobian of the transformation is

ax ax' _ ay' .
-5Wakaa

a ax, L 2
ýW ad ad ad

det(J) = det ax ax' D
L al0 ae ae

[ cos6 -0'sinO sine O'cosO

0 cos0 0 sine
det -asin6 --a'sinO-aO'cos9 acosO a'cosO-ao'sin6

L o -asin0 0 acos6

2

The joint probability density function fla,a',O,0') is

,aa2J [a 2 +r 2 -2arcos(O-0)
fk~a,a',0,tT) =exp [_0.

x (4 ý 2 -2Jexp [ 4 v2(a2±6ý

The joint probability density function of a and a' is obtained by integrating this
equation over 0 and 0':
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fla.,') =f dO f do'flaa',O.'Y)
0 -- 00

with the result

flaa') -exp 2] (B.8]

Io is the modified Bessel function that results from performing the integral:

1L 2n
IO(z) = I-Jexp (zcos 0)dO

Thus it is apparent from Equation B.8 that the probability density function of a is
Rician; the prouability density functicn of a' is normal with zero mean and variance of
2A2 2/To; and a and a' are independent because their joint probability density function
is separable into a function of a times a function of a'.
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APPENDIX C
VARIATION IN THE MEASUREMENT OF MEAN POWER

The nth moment of the amplitude ak of an impulse response function realization
with N samples is measured using the formula

Because of the finite length of a realization, pn is a random variable. The purpose of
this appendix is to develop general expressions for the mean and variance of P-n, and
then to apply those expressions to compute the expected variation, (T'a, in the measured
mean power of a realization:

G2 =(2 2 )-(4) 2

This variation depends primarily on the number of decorrelation times in the
realization, N/NO, where No is the number of samples per decorrelation time. It is
weakly dependent on the Doppler frequency power spectral density (PSD) and on the
values of N and No.

The mean value of Itn is easy io compute:

(gn) = I (k = (an)

where (an) is the ensemble mean value of the nth moment of amplitude. The second

moment of pitn is a little more of a challenge to compute:
N 5:(a• (a211) 2 =-N),,k

(It2n) = -n) a - N(I-k/N)Rn(k)

where Rn(k) is the correlation of the nth moment of amplitude:

Rn(k) = (an nalI (aa+k).

For the general case of Rician fading and arbitrary n, the joint probability density
function of the mplitude at two times, ftal,a 2), is needed to compute the correlation
function. However in the special case of mear. power where n is two, the correlation
function is easily computed from the statistics of the underlying complex voltage.

The power in a sample of the impulse response function with a Rician amplitude
distribution is

=[xk + r cos 012 + [yk + r sin &j2  (C. 1)
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where xk and Yk are uncornelated, normally-distributed random processes with .ero-

mean and variance (y2 The "Rician" components r cosO and r sin& are constant. It is
assumed that the random processes x at two times is jointly normal:

Alxix2) - 21 ----eI [- 2oP( +X2]

Values of the two-point corr-.lc on p are determined by the functional form of the
Doppler PSD and the time difference between the samples x1 and x2. A similar
expression holds for the joint probability density function of y, and Y2-

To compute the variance of the mean power measurement, the quantity (aka) is
required. Using Equation C.1 this quantity involves terms of the form

(Xi) = (X2) = =Y (Y-1) =0

(x) = (xI = (Y) = (yb =y2

(XIX 2) = (YiY2) = a2p

(XiX~) = X2) = (YJY1, = (.yY2)

(X2 2) = (Y2 2) = a4(1 + 2P2)

The cross correlation (a a4) is then

((?a) = 4o 4(1 +p 2) + 4r2 a2(1 +p) + r4

The Rician amplitude r and the variance C 2 are written in terms of the
scintillation index S4 so that the mean power (a52 is constant and equal to Po:

r2 = PoR0

2(52 = Po(1-R)

where the "Rician" index is

R= 4-S•.

Combining these results gives the following expression for the variance in the
measured mean power:

2 N-1
a l-NR2 ý- (1-k/N)[R+(lI-R)p(k)l2  (C.2)

p2- N N~

The two-point correlation p(k) is

C-2
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[exp [-(k/No)2 ] Gaussian Doppler PSD

p(k) = i + a6k1N 0 +((a6k/N°)213 ]exp [-%6 k/N°] f"6 Doppler PSD

I [1+ a4k/No ] exp [-ck1k/No] f4 Doppler PSD

where the coefficients a4 ((x4=2.146139) and Nx6 (a 6=2.904630) are determined by the
requirement that p(No)=e-.

Plots of the power measurement standard deviation are shown in Figure 20 for
N equal to 1024, 2048, and 4096. The value of No is 10 for each case, so the curves
conrespond to realizations of length 102.4vo, 204 .8To, and 409.6 ro, respectively. Solid
lines in the figure are for a Gaussian Doppler frequency PSD, and solid circles are for
an f 4 Doppler PSD.

As expected, the mean power measurement variation is larger for realizations
with fewer decorrelation times. The measurement variation decreases with decreasing
scintillation index because the fluctuating part oL the impulse response contributes less
and less to the total power. For a given value of N there is little difference between the
results for the two PSDs. This is because the three correlation functions above differ
little for values of k less than N, where p(k) is close to unity, but vary significantly for
larger values of k where p(k) is small. Thus the differences in p(k) for differing
Doppler frequency PSDs occur in Equation C.2 at values of k that contribute little to
the sum.

C-
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Figure 20. Power measurement error.
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ARMY LOGISTICS MANAGEMENT CTR AIR FOrICE CTR FOR STUDIES & ANALYSIS
ATTN: ULSIE ATTN AFSAA/SAKI

HAPRY DIAMOND LABORATORIES
ATTN: SLCIS-IM-TI.
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ONA-TR-92-98 (DL CONTINUED)

AIR FORCE ELECTRONIC WARFARE CENTER AUTOMETRIC. INC
ATTN: LTr M MCNEELY ATTN: C LUCAS
ATTN: SAVC
ATTN: SAZ BDM INTERNATIONAL INC

ATTN. W LARRY JOHNSON
AIR FORCE PHILLIPS LABORATORY

ATTN: J KLOUBACHAR BERKELEY RSCH ASSOCIATES, INC
ATTN: LAILA DZFLZKALNS ATTN: J WORKMAN
ATTN: OP W BLUMBERG ATTN: N T GLADD
ATTN: SANTI BASU ATTN: S BRECHT

AIR FORCE SYSTEMS COMMAND DELVIN SYSTEMS
ATTN. DCS REQUIREMENTS J COLYER ATTN: B PHILLIPS

ATTN: N CIANOS
AIR UNIVERSITY LIBRARY

ATTN: AUL-LSE DYNETICS, INC
ATTN: WILLIAM D TEPPER

NATIONAL TEST FACILITY
ATTN: NTB/JPO DR C GIESE ELECTROSPACE SYSTEMS. INC

ATTN: LINDA CALDWELL
PHILLIPS LABORATORY ATTN: P PHILLIPS

ATTN: NTN
EOS TECHNOLOGIES, INC

UNITED STATES STRATEGIC COMMAND ATTN: 8 GABBARD
ATTN: J 533 ATTN: R LELEVIER
ATTN: J 534
ATTN: J 614 GENERAL RESEARCH CORP INC

ATTN: J EOLL
DEPARTMFNT OF ENERGY

GRUMMAN AEROSPACE CORP
EG&G, INC ATTN: J DIGLIO

ATTN: D WRIGHT
HARRIS CORPORATION

LAWRENCE LIVERMORE NATIONAL LAB ATTN: E KNICK
ATTN: L-97 T DONICH ATTN: LYMUEL MCRAE

LOS ALAMOS NATIONAL LABORATORY HORIZONS TECHNOLOGY, INC
ATTN: DAN WINSKE ATTN: B LEE
ATTN: R W WHITAKER

INFORMATION SCIENCE, INC
SANDIA NATIONAL LABORATORIES ATTN: W DUDZIAK

ATTN: D DAHLGREN 6410
ATTN: DIV 2344 ROBERT M AXLINE INSTITUTE FOR DEFENSE ANALYSES
ATTN: ORG 1231 J R LEE ATTN- E BAUER
ATTN: ORG 9110 G CABLE ATTN: H WOLFHARD
ATTN: ORG 9110 W D BROWN
ATTN: TECH LIB 3141 JAYCOR

ATTN: J SPERLING
OTHER GOVERNMENT KAMAN SCIENCES CORP
CENTRAL INTELLIGENCE AGENCY ATTN: DASIAC

ATTN: OSWR/NED ATTN: E CONRAD
AITN: OSWR'SSD L BERG ATTN: G DITTBERNER

DEPARTMENT OF DEFENSE CONTRACTORS KAMAN SCIENCES CORPORATION

ATTN: B GAMBILL
AEROSPACE CORP ATTN: DASIAC

ATTN: BRIAN PURCELL ATTN: R RUTHERFORD
ATTN: C CREWS
ATTN: C RICE LOCKHEED MISSILES & SPACE CO. INC
AT-N: DR J M STRAUS ATTN: J KUMER
ATTN: G LIGHT ATTN: R SEARS
ATTN. JTHACKER
ATrN: M ROLENZ LOGICON R & D ASSOCIATES

ATTN. D CARLSON

AUSTIN RESEARCH ASSOCIATES ATTN: S WOODFORD
ATTN. R THOMPSON
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DNA-TR-92-98 (DL CONTINUED)

LOGICON R & D ASSOCIATES PHOTOMETRICS. INC
ATTN: J WALTOt" ATTN: I L KOFSKY

LOGICON R & D ASSOCIATES PHOTON RESEARCH ASSOCIATES
ATTN: E HOYT ATTN: D BURWELL

MAXWELL LABS. INC RJO ENTERPRISESfPOET FAC
ATTN: BILL RIX ATTN: STEVEN KRAMER

MCDONNELL DOUGLAS CORP S-CUBED
ATTN: T CRANOR ATTN: C NEEDHAM.

MCDONNELL DOUGLAS CORPORATION SCIENCE APPLICATIONS INTL CORP
ATTN: R HALPRIN ATTN: C SMITH

ATTN: D SACHS
MISSION RESEARCH CORP 2 GYS ATTN: L LINSON

ATTN: J KENNEALY
ATTN: R ARMST[RONG SCIENCE APPLICATIONS INTL CORP
ATTN: S DOWNER A fTN: J COCKAYNE
ATTN: W WHITE

SPARTA INC
MISSION RESEARCH CORP ATTN: K COSNER

ATTN: R L BOGUSCH
SPARTA INC

MISSION RESEARCH CORP ATTN. D DEAN
ATT?4: DAVE GUI'E

SR! INTERNATIONAL
MISSION RESEARCH CORP ATTN: R LIVINGSTON

ATTN: B R MILNER ATTN. RTTSUNODA
ATTN: B SAWYER ATTN: W CHESNUT
ATTN: D KNEPP
ATTN: D LANDMAN STEWART RADIANCE LABORATORY
ATTN'..: F GU_! CL!A,",'O A.TTN': R HUPP!

ATTN: R BIGONI
2 CYS ATTN: R DANA TELEDYNE BROWN ENG;NEERING

ATTN: R HENDRICK AT-N: J FORD
ATTN: S GUTSCHE ATTN: J WOLFSBERGER JR
ATTN. TECH LIBRARY ATrN: N .lASSINO

ATTN: RONALD E LEWIS
MITRE CORPORATION

ATTN: DR M R DRESP TOYON RESEARCH CORP
ATTN: J ISE

MITRE CORPORATIONAMTN: G COMPARETTO TRW SPACE & DEFENSE SECTORATTN: D M LAYTON

NORTHWEST RESEARCH ASSOC, INC ATTN: HL DEPT LIBRARY
ATTN: E FREMOUW

VISIDYNE, INC

PACIFIC-SIERRA RESEARCH CORP ATTN: J CARPENTER
ATTN: H BRODE ATTN- J DEVORE
ATTN. R LUTOMIRSKI ATTN: J THOMPSON

ATTN: W SCHLUETER
PACIFIC-S:ERRA RESEARCH CORP

ATTN: M ALLERDING
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